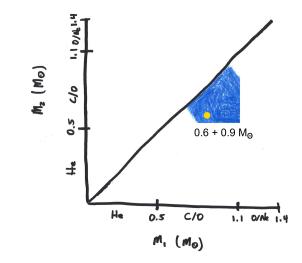

The Long-Term Outcomes of Double White Dwarf Mergers

UC Berkeley, Ph.D. (May 2016)


Josiah Schwab 05 January 2016

The merger of two white dwarfs (WDs) gives rise to a variety of post-merger outcomes.

e.g., Webbink (1984), ... ; Fig. from Dan et al. (2014)

Today, I will focus on the merger of two CO WDs, with a total mass above the Chandrasekhar mass.

The primary WD remains relatively undisturbed; The secondary WD is disrupted, forming a disk.

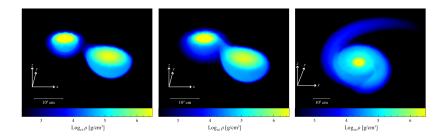


Fig. from Dan et al. (2011)

The evolution can be divided into three phases with well-separated timescales.

Dynamical Time (min)

Completion of merger

Viscous Time (hr)

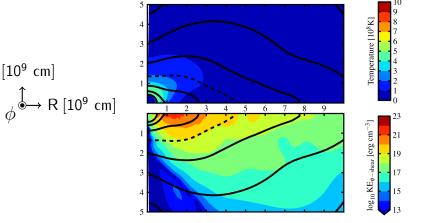
Redistribute ang. mom.

Thermal Time (kyr)

Radiate away energy

Shen et al. (2012); Schwab et al. (2012)

Introduction to WD+WD Mergers

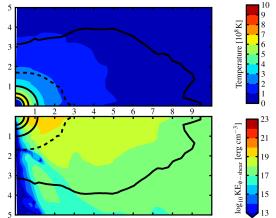

The viscous evolution of WD merger remnants

The thermal evolution of WD merger remnants

Summary and Conclusions

The remnant is unstable to the MRI and evolves viscously before cooling significantly.

z [10⁹ cm]

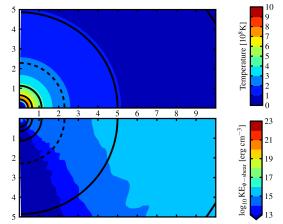


Schwab et al. (2012)

t = 0 s

The remnant is unstable to the MRI and evolves viscously before cooling significantly.

t = 1000 s



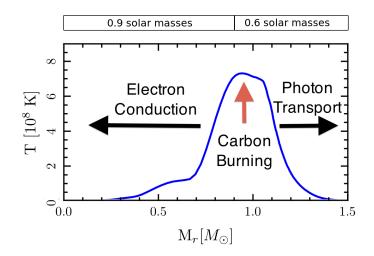
Schwab et al. (2012)

$$z [10^9 \text{ cm}]$$

 $\phi \xrightarrow{\bullet} R [10^9 \text{ cm}]$

The remnant is unstable to the MRI and evolves viscously before cooling significantly.

t = 10000 s

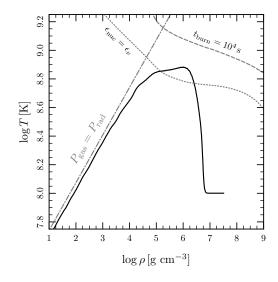


Schwab et al. (2012)

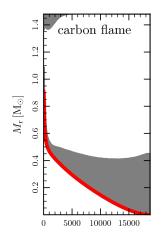
z [10⁹ cm]

$$\phi^{\uparrow} \rightarrow R [10^9 cm]$$

Energy generation and heat transport will drive the next phase of evolution.

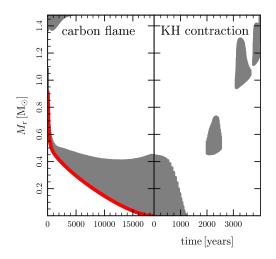

Introduction to WD+WD Mergers

The viscous evolution of WD merger remnants


The thermal evolution of WD merger remnants

Summary and Conclusions

I map the output of the hydro simulations into the MESA stellar evolution code.



A convectively-bounded carbon deflagration propagates inward, converting material to O & Ne.

time [years]

The carbon flame lifts the degeneracy; the remnant begins to cool & contract.

The KH contraction is neutrino-cooled and leads to off-center neon ignition.

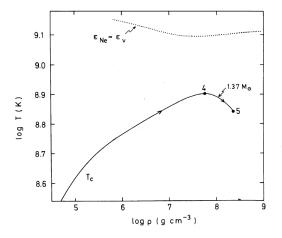
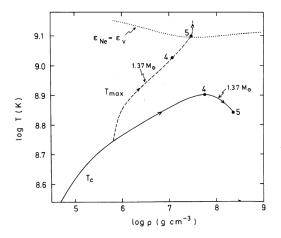
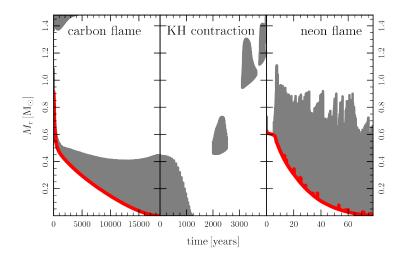
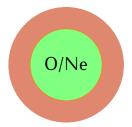


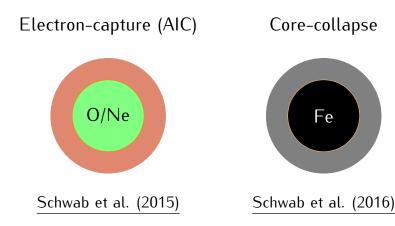
Fig. adapted from Nomoto (1984)

The KH contraction is neutrino-cooled and leads to off-center neon ignition.


Fig. adapted from Nomoto (1984)

A convectively-bounded neon deflagration forms and propagates inward.


The way the remnant collapses to a neutron star depends on the central composition

Electron-capture (AIC)

Schwab et al. (2015)

The way the remnant collapses to a neutron star depends on the central composition

Introduction to WD+WD Mergers

The viscous evolution of WD merger remnants

The thermal evolution of WD merger remnants

Summary and Conclusions

- A double white dwarf system that merges goes through three phases:
 - dynamical phase (merger)
 - viscous phase (rapid redistribution of ang. mom.)
 - thermal phase (readjustment and stellar evolution)

- A double white dwarf system that merges goes through three phases:
 - dynamical phase (merger)
 - viscous phase (rapid redistribution of ang. mom.)
 - thermal phase (readjustment and stellar evolution)
- Connecting simulations of each phase enables studies of the long-term evolution.

- A double white dwarf system that merges goes through three phases:
 - dynamical phase (merger)
 - viscous phase (rapid redistribution of ang. mom.)
 - thermal phase (readjustment and stellar evolution)
- Connecting simulations of each phase enables studies of the long-term evolution.
- For super-Chandrasekhar WD mergers, the likely fate is collapse to a neutron star; the evolution towards collapse appears to be more complicated than previously understood.