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Stellar evolution produces double white dwarf (WD) binaries
that will merge within a Hubble time.
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In the Milky Way, the total WD+WD merger rate
is approximately one WD+WD merger per century.

I Observe the merger events occurring in other galaxies
I Some WD+WD mergers produce thermonuclear supernovae

(or other explosive events) that are visible over large volumes.

I Study the remnants of WD+WD mergers
I If the merger produces a long-lived object,

there should be many such remnants in existence in our own galaxy.
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The merger of two white dwarfs
gives rise to a variety of post-merger outcomes.

Assumptions:

He det on C/O core > 0.8 M� → SN Ia

Central ρ > 4× 109 g/cm3

and O/Ne core → collapse to NS
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e.g., Webbink (1984), ... ; Fig. from Shen (2015)



Broadly, there are two classes of outcomes: immediate
destruction of the system or formation of a long-lived remnant.
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The primary (more-massive) WD remains relatively undisturbed;
The secondary (less massive) WD is disrupted, forming a disk.

Fig. from Dan et al. (2011)



The evolution can be divided into three phases
with well-separated timescales.

Dynamical

∼ minutes

Viscous

∼ hours

Redistribute
angular

momentum

Thermal

∼ kiloyears

Radiate
away

energy

Shen et al. (2012); Schwab et al. (2012)
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There has been extensive work performing hydrodynamics
simulations of WD mergers and their immediate aftermath.
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My approach maps these existing results into a hydrodynamics
code that can evolve them for the viscous time.

Modified version of ZEUS-MP (Hayes et al. 2006); Schwab et al. (2012)



The remnant is unstable to the magneto-rotational instability
and evolves viscously before cooling significantly.
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The remnant is unstable to the magneto-rotational instability
and evolves viscously before cooling significantly.
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The remnant is unstable to the magneto-rotational instability
and evolves viscously before cooling significantly.
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As a example system, consider the merger of carbon-oxygen
WDs with a total mass in excess of the Chandrasekhar mass.

CO + CO

0.6 M� 0.9 M�

? NS



The viscous heating leads to the ignition of carbon fusion
off-center in the remnant.
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Previous work approximated the merger as an accretion event.

Ṁ WD

e.g., Nomoto & Iben (1985), ..., but see Yoon et al. (2007)



In the accretion picture, it can be hard to determine the radius
of the remnant when it collapses to a neutron star.

NS

Extended Envelope:
Bright Signature

NS

Compact Envelope:
Faint Signature



My approach maps the output of the hydrodynamics simulations
of the viscous phase into the MESA stellar evolution code.

1D Stellar Evolution

MESA (Paxton et al. 2011, 2013, 2015, 2018); Schwab et al. (2016)



After the merger there is a cool, giant phase,
but this phase ends before the collapse to a neutron star.
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The way the remnant collapses to a neutron star
depends on the central composition.

Fe

Massive star core-collapse

O/Ne

Electron-capture

Schwab et al. (2015, 2017)
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The stellar evolution calculation gives the core composition.

CO + CO

0.6 M� 0.9 M�

CO ONe NS

Schwab et al. (2016)

Si/Fe NS

e.g., Nomoto & Iben; Saio & Nomoto (1985)
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I A double WD system that merges goes through three phases:
I dynamical phase (merger)
I viscous phase (rapid redistribution of angular momentum)
I thermal phase (readjustment and stellar evolution)

I Connecting simulations of each phase enables studies of the
long-term evolution of the post-merger objects.
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Lagrangian
Hydrodynamics

∼ minutes

Eulerian
Hydrodynamics

∼ hours
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The formalism developed here can be applied broadly.
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Single
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Schwab
(2018)
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Schwab et al.
(in prep)

Collapse to NS
during

giant phase

Brooks et al.
(2017)

Collapse to NS
after

giant phase

Schwab et al.
(2016)

Collapse to NS
(but when?)

Schwab et al.
(in progress)
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