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O/Ne WDs can collapse if they grow in mass
and reach a critical central density.

AIC = Accretion-induced collapse

grows to
≈ 1.38 M�
O/Ne WD



The progenitors of AIC are the "classic" (super-)
Chandrasekhar Type Ia progenitor systems.

Single-Degenerate Double-Degenerate

HeWD

or

RGWD

WD + WD

=

WD



Multi-D models that explore the onset of collapse
are not unambiguously showing formation of a NS.

I Leung & Nomoto (2017) emphasize that models
flip between explosion and collapse within
existing uncertainties in the initial model.

I Jones et al. (2016) find only their highest
density models collapse to NSs, with other
models leaving sub-Chandra bound remnants.

I There may be a connection between AIC and
low-mass WDs with peculiar compositions.
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To improve our understanding, we want to produce
more accurate AIC progenitor models.

I There’s been recent progress in providing
suitable weak reaction rates and incorporating
them in stellar evolution codes.

Jones et al. (2013); Martinez-Pinedo et al. (2014);
JS et al. (2015); Suzuki et al. (2016)

I We want models of ONe WDs with composition
profiles self-consistently generated from SAGB
star models.

e.g., Camisassa et al. (2018); Lauffer et al. (2018)



Nuclear reactions on key isotopes in the WD
have important and varied effects.

8.8 9.0 9.2 9.4 9.6 9.8 10.0

log(ρ/g cm−3)

7.8

8.0

8.2

8.4

8.6

8.8

9.0
lo

g
(T
/
K

)



Nuclear reactions on key isotopes in the WD
have important and varied effects.

8.8 9.0 9.2 9.4 9.6 9.8 10.0

log(ρ/g cm−3)

7.8

8.0

8.2

8.4

8.6

8.8

9.0
lo

g
(T
/
K

)
24Mg 20Ne

Exothermic electron captures



Nuclear reactions on key isotopes in the WD
have important and varied effects.

8.8 9.0 9.2 9.4 9.6 9.8 10.0

log(ρ/g cm−3)

7.8

8.0

8.2

8.4

8.6

8.8

9.0
lo

g
(T
/
K

)
24Mg 20Ne

Exothermic electron captures

23Na25Mg

Urca-process cooling



Nuclear reactions on key isotopes in the WD
have important and varied effects.

8.8 9.0 9.2 9.4 9.6 9.8 10.0

log(ρ/g cm−3)

7.8

8.0

8.2

8.4

8.6

8.8

9.0
lo

g
(T
/
K

)

0.001
0.003
0.010
0.030
0.100

1.000

C
ar

b
on

b
u

rn
in

g 24Mg 20Ne

Exothermic electron captures

23Na25Mg

Urca-process cooling



The amount of carbon left over depends on the
mass of the star and the amount of overshooting.
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e.g., Siess (2007); Fig. from JS & Rocha (in prep.)



As the WD cools, the interior mixes,
erasing the initially complicated carbon profile.
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Urca-process cooling precludes low-density carbon
ignitions, but can still cause a significant shift.
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Carbon burning can be triggered
by exothermic electron captures.

I The presence of Urca-process cooling causes
models to become convectively unstable when
exothermic electron captures occur.

JS et al. (2017)
I The additional entropy generation from carbon

burning makes the models even more unstable.

I Convection under these conditions is
challenging to model due to the operation of
the convective Urca process.

e.g., Lesaffre et al. (2005)
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I Recent literature raises questions about
whether ONe cores collapse to NSs. More
work is needed here.

I One important way to push this question
forward is to use ONe WD models generated
self-consistently from SAGB star evolution.

I The presence of carbon can have an important
effect and the expected range of carbon
abundance variation is such that one might
expect it to lead to a diversity of outcomes.
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