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On the way to their final fates, double WD
systems evolve through multiple phases.
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I’ve applied this approach broadly over the
possible range of WD+WD mergers.
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White dwarf mergers seem to provide a natural
explanation for the formation of these objects.
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He

see e.g., Jeffery, Karakas, & Saio (2011)
I In addition, there can be further H and He

burning during the merger.



The high nitrogen abundance requires additional
CNO processing during the merger.

from Asplund et al. (2000)



Getting the detailed CNO abundances right is
challenging.

I You can reach the right conditions to make 18O.

Clayton et al. (2007), Staff et al. (2012)

I 14N gets destroyed in making the 18O, so you
need to make even more 14N.

Menon et al. (2013), Zhang & Jeffery (2014)

I The outer layers of the CO WDs are generally
oxygen-rich. During the merger, it is difficult
not to bring up a lot of 16O. Does this require
the presence of a large He-buffer layer?

Staff et al. (2012, 2018)



Mixing is essential but also uncertain.

I Zhang & Jeffery (2014) include convective
mixing.

I Menon et al. (2013) have convection plus a
parameterized mixing prescription. They
characterize the required spatial and temporal
properties of the mixing.

I Lauer et al. (2018) evolve rotating models and
allow for rotationally-induced mixing processes.



Microphysical inputs (e.g., opacities)
often assume solar-scaled abundances
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CNO enhancements occur on the H-rich AGB;
there are convenient computational tools.



MESA can now use low-temperature,
composition-dependent opacities.
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Past MESA R CrB models have shown annoying
numerical issues; hopefully, these are gone.

Fig. from Zhang et al. (2014), see also Menon et al. (2013)



Mass loss recipes are an important ingredient.

I Generally, recent models use Bloecker-like
winds with varying efficiencies, meaning the
mass loss rate is ∼ 10−5 M� yr−1.

Menon et al. (2013), Zhang & Jeffery (2014), Lauer et al. (2018)

I For R CrB, v∞ ≈ 300 km s−1, so the specific
energy is ∼ 100x greater than in an AGB wind.

Clayton et al. (2003, 2013)

I What about the duty cycle?
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Accurate mass loss rates are required
for accurate lifetime estimates.
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The CO WD cores don’t grow significantly;
the R CrB descendants don’t have high masses.
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The merger of two CO WDs with a super-Chandra
total mass can collapse to an NS.

CO + CO
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CO ONe

!

Si/FeNS

Nomoto & Iben; Saio & Nomoto (1985), JS et al. (2016)



It takes ≈ 20 kyr from merger to collapse;
the models spend time in a cool giant phase.
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The merger of He WD & ONe WD with a
super-Chandra total mass can collapse to an NS.

He + ONe
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AIC

Brooks, JS et al. (2017b)



Massive R CrB analogs may be formed.

I Are there He-shell burning R CrB-like objects,
but with more massive cores and hence
noticeably higher luminosities?

I At these near-Eddington luminosities, can you
grow the core?
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I Models of RCBs descended from double WD
mergers are broadly consistent with
observations, but we have to overcome
I uncertain mass loss rates
I uncertain mixing process

I More massive double WD mergers also make
rare hydrogen-deficient objects that may sit in
similar parts of the HR diagram. Even if they’re
10% as common and live 10% as long, we may
be able to find a few.





Opacity calculations are somewhat different than
they were then. . .
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. . . and low T is different too.
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