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Accretion-induced collapse (AIC) occurs
when an O/Ne WD reaches a critical mass.
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Multiple channels are thought to lead to AIC.
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No direct observations of AIC have yet been made.
I Models of the collapse of a massive WD to form

a neutron star (NS) produce a weak explosion
and ∼ 10−3 M� of Ni-rich ejecta.

Woosley & Baron (1992); Dessart et al. (2006)

I Other radio, optical, and X-ray signatures have
been predicted, but depend on whether

I the progenitor systems have surrounding material
I other aspects of the evolution synthesize Ni-56
I the newly formed NS is a magnetar
e.g. Piro & Kulkarni (2013), Metzger & Bower (2014)
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The strongest (indirect) evidence for AIC
is the presence of young NSs in GCs.

Globular clusters have:
I old stellar populations (∼ 10 Gyr)
I low escape velocities (< 50 km/s)
I some young NSs (P ~ 300 ms, B ~ 1011 G)

Lyne et al. (1996); Boyles et al. (2011)

AIC:
I takes a long time
I produces NSs with low natal kicks
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Weak reactions will drive the evolution.

Electron capture
(Z ,A) + e−→ (Z − 1,A) + νe

Beta decay
(Z − 1,A)→ (Z ,A) + e− + ν̄e



The WD is a cold, electron-degenerate plasma;
the electron Fermi energy is ∼ MeV and rising.
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The WD is a cold, electron-degenerate plasma;
the electron Fermi energy is ∼ MeV and rising.

occupation fraction

Ele
ctro

nE
ner

gy
[Me

V]

0.0 0.4 0.8

1
2

3
4

5
6

7
8

Nu
cle

ar
En

erg
y[M

eV]

23Ne

23Na

1
2

3
4

5
6

7
8



At some particular densities the plasma is cooled
by emission of Urca-process neutrinos.
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At some particular densities the plasma is heated
by emission of gamma-rays.
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Initially, the temperature is set by a balance
between compression and neutrino cooling.
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Substantial Urca-process cooling occurs
associated with the A = 23 and A = 25 isotopes.
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This shuts off neutrino cooling
and the material evolves along an adiabat.
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Substantial heating also occurs
associated with the A = 24 isotopes.
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Urca-process cooling will set the temperature
at the onset of captures on 20Ne.
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Electron captures on 20Ne are exothermic;
this heating will ignite oxygen fusion.
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A thermal runaway develops in the core;
but convection is not triggered in the core.
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This will lead to the formation
of an outgoing oxygen deflagration wave.



There is a competition between the deflagration
and the weak reactions occurring in its ashes.

Mr = 0 Mr ≈ 0.3M�

NSE ONe

ν

ν



The models are uncomfortably close to the
boundary between collapse and explosion.

e.g. Nomoto & Kondo (1991)



I This work provides an analytic understanding of
the evolution of ONe WDs evolving towards
accretion-induced collapse.

I We have evolved full-star models that include
Urca cooling and resolve the length-scale of the
birth of the oxygen deflagration.

I These models provide important input for the
multi-D simulations necessary to determine
whether these WDs collapse or explode.
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Mass transfer after core He-burning gives Ṁ

in the regime for stable He burning on the WD.

HeWD

Yoon & Langer (2003); Brooks et al. (2016, 2017)



We evolve both stars plus their orbit;
there is stable He burning, plus carbon flashes.

Brooks et al. (2017)



The models reach the conditions for AIC;
Urca cooling erases some of the initial differences.

Brooks et al. (2017)



Not only do He + O/Ne WD models reach AIC,
but some He + C/O WD models do too.
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Double white dwarf mergers evolve towards
a thermally-supported, spherical state.
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A convectively-bounded carbon deflagration forms
and propagates inward, reaching the center.



Then the remnant undergoes a phase
of Kelvin-Helmholtz contraction.



The KH contraction is neutrino-cooled
and leads to off-center neon ignition.

Fig. adapted from Nomoto (1984)



The KH contraction is neutrino-cooled
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A convectively-bounded neon deflagration forms
and propagates inward, destroying O/Ne core.



Post-merger there is a cool, giant phase,
but the carbon-burning is too deep to sustain it.
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I We’ve evolved both single and double
degenerate systems from "early" phases
(nearly) up to the collapse to a NS.

I For He star + WD binaries, we explored a
channel where an initially CO WD is converted
to ONe during the accretion phase.

I For super-Chandrasekhar WD mergers, the
likely fate is collapse to a neutron star, though
the collapse may not occur via an O/Ne core.
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I My collaborators and I have been working to
comprehensively re-address AIC in order to
develop a modern understanding of the
progenitor systems and the collapse process.

I Our work provides much-needed initial models
necessary for multi-D work that can probe the
collapse/explosion and make predictions for the
signatures of the AIC event itself.

I A better understanding of the systems that
undergo AIC can predict signatures useful for
finding a Galactic AIC progenitor system.
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Mflame = 0.30M�
rflame = 5013 km

vflame = 4× 10−4 cm s−1
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Mflame = 0.30M�
rflame = 1884 km
vflame = 0.1 cm s−1
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