Double white dwarf mergers as the origin of single sdB stars

with K.J.Shen

Josiah Schwab 10 July 2017 A WD+WD merger can be broken to stages, each with well-separated timescales.

Dynamical Time (min)

Completion of merger $t_{\rm dyn} \sim P_{
m orb}$

Viscous Time (hr)

Redistribute ang. mom. $t_{\rm visc} \sim \alpha^{-1} P_{\rm orb}$

Thermal Time (kyr)

Radiate away energy $t_{\rm therm} \sim E/L$

Studying each stage requires different approaches, but we can chain them together.

e.g., Yoon et al. (2007); Schwab et al. (2016)

Double white dwarf merger remnants evolve towards a thermally-supported, spherical state.

see Shen et al. (2012); Schwab et al. (2012)

I map the output of my previous work into the MESA stellar evolution code.

Evolve the models forward to core helium-burning.

radiate thermal energy from the merger $(\sim 10^4\,{
m yr})$

Evolve the models forward to core helium-burning.

off-center He flashes propagate inwards (~ 10⁶ yr) see Saio & Nomoto (1998); Saio & Jeffery (2000)

Hydrogen is not self-consistently included in hydro simulations of the WD+WD merger.

The pre-merger WDs have H envelopes

• expect
$$M_H \sim 10^{-3} \,\mathrm{M}_\odot$$

e.g. Istrate et al. (2016); Hall & Jeffery (2016)

Hydrogen is not self-consistently included in hydro simulations of the WD+WD merger.

The pre-merger WDs have H envelopes

• expect $M_H \sim 10^{-3} \,\mathrm{M_\odot}$

e.g. Istrate et al. (2016); Hall & Jeffery (2016)

First mass transferred is the H envelope

can have important effects on orbital evolution
 D'Antona et al. (2006); Kaplan et al. (2012); Shen (2015)

In my models, the hydrogen is evenly distributed in the outer part of the model.

When core helium-burning begins, only $\sim 10^{-4}\,M_\odot$ of hydrogen remains.

Element diffusion doesn't help H survive.

- Rotational mixing overwhelms diffusion
- \blacktriangleright Only have $\sim 10^{6}~{\rm years}$

rotation	diffusion	$M_{H}[10^{-4}M_{\odot}]$	$X_{H, \text{surface}}$
yes	no	1.32	0.01
yes	yes	1.30	0.01
no	no	2.02	0.01
no	yes	2.00	0.52

Will the merger remnants be rapidly rotating?

 \blacktriangleright The angular momentum at the end of the SPH calculation is $\sim 10^{50}~{\rm g~cm^2~s^{-1}}.$

Will the merger remnants be rapidly rotating?

- > The angular momentum at the end of the SPH calculation is $\sim 10^{50}~{\rm g~cm^2~s^{-1}}.$
- Given a typical moment of inertia and radius for an sdB star

$$v_{
m rot} \sim 30 \ {
m km \ s^{-1}} \left({J \over 10^{48} \ {
m g \ cm^2 \ s^{-1}}}
ight)$$

Will the merger remnants be rapidly rotating?

- > The angular momentum at the end of the SPH calculation is $\sim 10^{50}~{\rm g~cm^2~s^{-1}}.$
- Given a typical moment of inertia and radius for an sdB star

$$v_{\rm rot} \sim 30 \ {\rm km} \, {\rm s}^{-1} \left({J \over 10^{48} \ {\rm g} \, {\rm cm}^2 \, {\rm s}^{-1}}
ight)$$

Single hot subdwarfs seem not to be fast rotators ($v \sin i < 10 \text{ km s}^{-1}$).

Geier & Heber (2012)

As the remnant contracts, the outer layers reach critical rotation and are shed.

When core helium-burning begins, the models are no longer rapidly rotating.

We've studied the formation of a single sdB star by combining multi-dimensional hydrodynamics simulations and stellar evolution calculations.

- We've studied the formation of a single sdB star by combining multi-dimensional hydrodynamics simulations and stellar evolution calculations.
- In this model of the remnant of a 0.2 + 0.3 M_☉ He WD merger, at the time when core helium-burning begins
 - \blacktriangleright only $\sim 10^{-4} M_\odot$ of hydrogen remains
 - the model is no longer rapidly rotating

The hydrogen mass fraction doesn't affect the total fraction of H that burns.

